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Experiments by Huppert (1982) have demonstrated that a finite volume of fluid 
placed on an inclined plane will elongate into a thin sheet of fluid as it slides down 
the plane. If the fluid is initially placed uniformly across the plane, the sheet retains 
its two-dimensionality for some time, but when it has become sufficiently long and 
thin, the leading edge develops a spanwise instability. A similarity solution for this 
motion was derived by Huppert, without taking account of the edge regions where 
surface tension is important. When these regions are examined, it is found that the 
conditions at the edges can be satisfied, but only when the singularity associated with 
the moving contact line is removed. When the sheet is sufficiently elongated, the 
profile of the free surface shows an upward bulge near the leading edge. It is 
suggested that the observed instability of the shape of the leading edge is a result of 
the dynamics of the fluid in this bulge. The related problem of a ridge of fluid sliding 
down the plane is examined and found to be linearly unstable. The spanwise 
lengthscale of this instability is, however, dependent on the width of the channel 
occupied by the fluid, which is at variance with the observed nature of the instability. 
Preliminary numerical solutions for the nonlinear development of a small disturbance 
fo the position of a straight leading edge show the incipient development of a finger 
of fluid with a width that does not depend on the channel size, in accordance with 
the observations. 

1. fntroduction 
Consider a fixed volume of fluid initially placed uniformly across an inclined plane 

and held there. When the fluid is released, it slides down the plane under gravity in 
the form of an elongating and thinning sheet. If the leading edge of the sheet is 
straight when the fluid is released, and if it remains straight throughout the motion, 
the whole surface of the plane will eventually be coated by the fluid. An exception 
to this outcome will occur if the contact angle of the fluid and the total fluid volume 
are such that a static equilibrium can be reached, with the whole fluid supported by 
the resolved surface tension at the leading edge. If this is not the case, then the 
quantity of interest is the speed of the leading edge of the fluid as it moves down the 
plane. It is by no means certain, however, that the hypothesis that the leading edge 
should remain straight throughout the motion is justified. If the motion is unstable 
to small spanwise disturbances to the position of the leading edge, the nonlinear 
development of these distortions may well result in the plane being only partially 
covered by the fluid. It is clearly of some importance to determine the circumstances 
in which such a failure to achieve a complete coating can occur. 

Experiments on the spreading of a fixed amount of viscous fluid have been 
reported by Huppert (1982). He derived a similarity solution governing the 
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(b) 

The two types of instability : (a)  parallel-sided fingers, ( b )  triangles. 

viscosity-gravity balance when the fluid has been stretched sufficiently far that 
lubrication theory can be applied, and his experiments provided convincing evidence 
that this similarity solution was valid; the length of the sheet is proportional to the 
cube root of the elapsed time. Surface tension must, however, be important near 
the leading edge of the sheet (and, to a lesser degree, at  the upper edge also). The 
similarity solution gives a non-zero thickness for the sheet at its lower extremity. The 
good agreement between the similarity solution and the experimental evidence 
suggests, however, that the bulk motion of the fluid is unaffected by the details of the 
dynamics in the vicinity of the leading edge. 

Huppert’s experiments also showed that, when the sheet of fluid had become long 
enough, and correspondingly thin, the leading edge spontaneously developed a 
spanwise and roughly periodic variation. Measurements of the wavelength of this 
variation for different fluids showed that it does depend on the surface tension, unlike 
the stretching motion of the sheet, but no explanation of the nature of the instability 
nor why it only became manifest some time after the fluid had been released were 
presented. An interesting phenomenon concerning the nature of the spanwise 
variations was observed when the initial instability had developed to a finite 
amplitude. In some cases the leading edge took the form of a series of triangles, with 
both the bases and the tips moving down the plane. The tips, however, moved faster 
than the bases so that the triangles lengthened as time went on. In other cases, 
parallel-sided fingers of equal width but irregularly spaced were found; the tips 
moved down the plane but the bases of the fingers and the fluid remaining in the 
continuous sheet above them were stationary. These two types of instability are 
sketched in figure 1. Silvi & Dussan V. (1985) point out an important consequence of 
the difference between these two types. For the triangular form, as for the sheet 
without any instability, the whole plane will eventually be covered by the fluid. If 
the parallel-sided fingers appear, then the regions of the plane between them will 
remain uncoated by the fluid. In Huppert’s experiments, using fluids with differing 
viscosities and surface tensions, both types were encountered, but there did not seem 
any obvious correlation between the properties of the fluids and the type of the 
instability. Silvi & Dussan V. repeated the experiments of Huppert, but instead of 
using different fluids on the same substrate, they used the same fluid on two different 
substrates. Thus the viscosity and surface tension were unchanged, but the contact 
angles between the fluid and the substance forming the plane on which the sheet was 
moving differed. They found that, with glass and a contact angle of 1 8 O ,  triangles 
were formed, but with Plexiglas and a contact angle of 70°, the parallel-sided fingers 
emerged. This clearly suggests that, in order to predict which type of instability will 
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occur, it is necessary to pay close attention to the dynamics of the fluid near the 
moving contact line. 

There are three goals to the investigation to be described in the present paper. The 
first is to show that it is possible to complete the description of the motion given by 
Huppert’s similarity solution to include the vicinity of the edges. An attempt to do 
so was given by Huppert, but it is based on an incorrect equation. The second is to 
identify the reason for the delayed appearance of the instability. The third is to find 
the characteristics of a linear instability of the leading edge. There is a fourth goal, 
which is only partially achieved in this paper. It is to find the form of the instability 
that will be present when the infinitesimal disturbances of the linear theory have 
grown to a finite size. This nonlinear theory will be needed to explain the distinction 
between the two types that are observed, the triangles and the parallel-sided fingers. 
Numerical evidence tentatively suggests the formation of the fingers, but does not 
support the appearance of triangular shapes for the leading edge. More extensive 
numerical work currently in progress will, it is hoped, achieve this fourth goal more 
satisfactorily. 

Throughout this paper we shall be dealing with fluid sheets that are long compared 
with their depth. Huppert’s experiments reveal, as will be demonstrated later, that 
the instability begins when the capillary number is small. (The capillary number 
measures the relative importance of viscous and capillary forces.) This is an 
important point, because the characteristics of the flow near the front of an 
advancing sheet depend significantly on the size of the capillary number. When the 
capillary number is large, as at the head of a gravity-driven current, the fluid 
advances in a sort of rolling manner, with air entrainment under the leading edge and 
with rapid variations of velocity within the front. At low capillary numbers, 
however, the flow is quite different. The advance is quasi-steady and there is a well- 
defined contact line which moves along the plane surface. In the present case the 
capillary number is very small and it is essential, therefore, to include effects that are 
important when moving contact lines are present, such as contact-angle variation 
and the removal of the force singularity there. Because we are dealing with long thin 
sheets of fluid, it is natural to wish to make use of lubrication theory. Thus we shall 
not be able to describe the initial stages of the motion, when the fluid is held at  the 
top of the plane. We shall also have to restrict attention to fluids and solids that have 
a small mutual contact angle, since lubrication theory requires the slope of the free 
surface of the fluid relative to the plane substrate to be small. In order to bridge the 
gap between the contact line and the similarity solution for the main part of the 
sheet, surface tension must be included but this does not permit an acceptable 
solution unless there is slip at the contact line. This should cause no surprise since it 
is well known that such an adjustment to the standard boundary condition is needed 
in the vicinity of moving contact lines. The precise form of condition that is used is 
not important ; a variety of models for this condition have been proposed (see Dussan 
V. 1976), but they all produce comparable results. The application of this condition 
enables a satisfactory solution to be obtained, and shows that, for small capillary 
numbers, the head of the sheet bulges upwards to a height that is several times the 
height of the sheet behind the head. The presence of such an increase in height of in 
the frontal region above that of the leading sheet was not reported by Huppert in his 
experiments, though it has been observed in sliding motions of fluid at low capillary 
numbers and is a common feature of theoretical investigations of such flows (Hocking 
1981). In an extreme form, it can be seen on any window on a wet day; the water 
forming the bulk of a drop that is slipping down the glass leaves behind it a thin film 
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FIGURE 2. Evolution of triangles into parallel-sided fingers. 

of water. The reason for the presence of this bulge is presumably the competition of 
gravity pulling the fluid down and the reluctance of the contact line to move, leading 
to a build-up of fluid immediately behind the head. The presence of this bulge 
suggests that the instability may be associated with the part of the fluid near the 
head, with the remainder of the sheet playing only a passive role. If this be so, then 
we can simplfy the problem, retaining the important dynamical processes, by 
considering a ridge of fluid near the leading edge and ignoring the presence of the thin 
sheet stretching back from the bulge to the top of the plane. The spreading and 
sliding of such a ridge was the subject of earlier papers (Hocking 1981,1982). A linear 
stability analysis has now been done and it shows that spanwise variations in the 
position of the edges of such a ridge are unstable and that the maximum growth rate 
is associated with the longest wave that can fit into the region between the bounding 
sides of the channel occupied by the fluid. The fluid tends to collect towards one side 
or other of the channel and move down the plane there. This is not the instability 
that is observed, however, and we must go on to consider the nonlinear development 
of an initial disturbance to the leading edge. The numerical solution so far attempted 
is not conclusive, but it does point towards the development of a finger of fluid 
moving down the plane with a width that is independent of the width of the channel. 
Hence it appears that the simplified model problem of the ridge does account for the 
development of the parallel-sided fingers of equal width and unequal spacing that are 
observed in some of the experiments. 

These results give no hint of the appearance of the triangular form found in some 
of the experiments. In this mode, the contact line has a non-zero velocity component 
normal to itself, so the contact angle is above its maximum static value. As the 
triangle lengthens this angle will decrease, so the triangular form cannot exist 
indefinitely. When the static value is reached, the fluid can only move in a direction 
parallel to the static contact line (Dussan V. & Chow 1983), and the pattern of the 
contact line may change into that of the parallel-sided fingers, in a manner like that 
sketched in figure 2. Thus, if we have a plane that is sufficiently long, the presence 
of the triangular shape will be only a transitory phenomenon and eventually, in all 
cases, parallel-sided fingers will develop. If this argument is correct, we might expect 
to see triangles more readily when the maximum static contact angle is small than 
when it is large, and their replacement by fingers requires the plane to be long 
enough. This is not inconsistent with the experiments of Silvi & Dussan V., as far as 
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the presence of triangles is concerned. But their conclusion that the size of the 
contact angle determines whether or not the plane is completely wetted by the fluid 
must be replaced by a condition combining both the contact angle (strictly the 
maximum static angle) and the length of the plane. Since the numerical work so far 
undertaken does not exhibit the triangular form, it is not yet possible to formulate 
this proposed condition. 

2. Governing equations and parameters 
It is convenient to formulate the problem in’ the most general form that will be 

used here, even though at first only a restricted case will be considered. Lubrication 
theory will be used throughout, so that the depth of the fluid is small compared with 
the lengthscale of variations in the depth, and we include spanwise variations, slip, 
contact angle hysteresis, and velocity-dependent contact angles. 

Suppose that a volume V‘ of fluid is initially placed uniformly across a sloping 
plane and held there by a barrier. The plane is at an angle 8 below the horizontal and 
the spanwise extent of the fluid is d ’. When the barrier is removed, the fluid moves 
down the plane in the form of an elongating sheet which, some time after the fluid 
is released, becomes thin enough for lubrication theory to be applied. We shall ignore 
the initial stage of the motion as it will not have any lasting effect on the subsequent 
motion. The fluid is characterized by its density p, viscosity ,u and surface tension y ,  
all of which are assumed to be constant, and g is the gravitational acceleration. Let 
(x’, y’, z’) be Cartesian coordinates with their origin at the top of the plane and with 
x’ measured down the plane, z’ normal to the plane and y’ horizontal, and let the 
corresponding velocity components be (u’, v’, w’). Then, if p’ is the pressure in the 
fluid and t’ is the time, the lubrication equations have the form 

aP‘ -+pgcos8 = 0, 
32’ 

(3) 

The height of the free surface of the fluid above the plane is denoted by h’(x’, y’, t ’ ) ,  
The contact lines are where h‘ = 0 and, in their vicinity, we must allow for slip to 
occur when they are moving. A suitable form of boundary condition there is to 
suppose that the relative velocity between the fluid and the plane is proportional to 
the shear stress. Therefore, on the plane z’ = 0, 

where $A’ is the slip length and is much smaller than the height of the fluid. These 
conditions can be applied not only near the contact line but, for convenience, at all 
points covered by the fluid, the errors so introduced being no more than of order A’lh‘ 
in magnitude. 
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On the free surface of the fluid, we have zero shear stress, constant normal stress 
and a kinematic condition for the fluid particles lying in the surface. These conditions 
are expressed by the following equations : 

where p i  is the atmospheric pressure. 
The fluid is bounded in the spanwise direction by the planes y’ = 0, y’ = d’. If these 

are rigid boundaries, there will be boundary layers present on them, but these we 
shall ignore. We shall also want to deal with the case of an unbounded sheet with a 
spanwise variation of period 2d’. In either case, we can apply the following 
conditions : 

The leading and trailing edges of the fluid are given by 

2’ = a’(y’, t’), d = b’(y’, t ’ ) ,  0 < y’ < d’, (10) 

and h ’ = O  at z’=u’,  ~ ’ = b ’ .  (11) 
If the top edge remains in its original position, b’ = 0, and, to maintain periodicity in 
the spanwise direction, we must have 

-=-- - 0 at y‘ = 0 ,d ‘ .  
ayf ay/ 
a d  ab’ 

The volume of the fluid remains constant during the motion so that there is an 
integral constraint on h’ which can be expressed as follows : 

[‘[h’(d, y/’,t’)dz’dy’ = V. (13) 

Finally, we need to postulate the contact angles at the two edges. If these angles 
are denoted by a(y’, t’) and /3(y’, t ’ )  at the leading and trailing edges, respectively, we 
have 

where n’ is normal to the contact line and is directed away from the fluid. Since we 
are using lubrication theory the gradients of h‘ are small, and we can replace tan a by 
a and tan8  by 8. These contact angles are not fixed properties of the materials used, 
but vary with the motion as sketched in figure 3, where a, and 8, are the maximum 
and minimum static contact angles (see Dussan V. 1979). For a fluid without contact 
angle hysteresis, a, = B,, while for a completely wetting fluid, ps = 0. For moving 
contact lines, the apparent contact angle, measured away from the vicinity of the slip 
region, is increased above the maximum static angle for a contact line moving 
forward and is decreased below the minimum static angle for backward motion. If 
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- c-- Speed 

FIGURE 3. Contact-angle hysteresis and variation. 

the capillary number is small enough, we can assume a linear variation with the 
speed. Let Ua, and Ub, be the normal velocity components of the contact lines, so that 

Then, if 6’ is the slope of the linear variation of the contact angles, we can express 
them as follows: 

(16) 

a = a, + 6’Uaf, 

P, < a < a,, 
a = ps+6’Ua., 

if Va, > 0, 
if Vat = 0, 
if Va, < 0, 

for the lower, leading edge of the fluid, and 

p = p,-~Su’~?, 
p, < ,i3 < a,, 
/3 = a,-6’Uaj, 

if UV > 0, 
if UV = 0, 
if t& < 0, 

for the upper, trailing edge. We require, of course, that a and p be non-negative since 
the fluid is above the plane. If /3, = 0, the upper edge does not move from its initial 
position. 

This completes the formulation of the problem, and, if we are given an initial state 
consistent with the lubrication approximation, we can use these equations and 
conditions to determine the evolution of the system. It is convenient to non- 
dimensionalize the variables at  this stage. We define a lengthscale a, and a time scale 

P 
pga, sin t9 ’ 

and the corresponding velocity scale is a,/t,. Non-dimensional quantities will be 
denoted by dropping the prime from the previously defined values. The solution of 
the lubrication equations is standard and the details need not be repeated here. The 
goal is an equation for the height h of the fluid, and this is found to take the following 
form : 

3 at + [ & k ( h  ax + A )  &} + $ k ( h  + A) &}] [ (T ($2 + $) - cot 8 h] 

a 
ax +-{(h2(h+A)} = 0. (19) 

13 FLM 211 
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The important dynamical parameter is CT, defined by 

The first term in (19) results from the viscous fluid motion, the term with factor u 
represents the effect of surface tension, the term multiplied by cot 8 comes from the 
hydrostatic pressure across the depth of the fluid and the last term is the forcing 
term produced by the component of the weight of the fluid down the plane. 
In the spreading of fluid on a horizontal plane (Hocking 1983), only the first of 
the two gravitational terms is present, but on an inclined plane the second usually 
outweighs the first. The equation for h(x,y,t) must be solved in the region 
0 < y < d,  b(y, t) < x < a(y,  t ) ,  subject to the boundary conditions 

= O  on y = O , d ;  ah a3h h = O  on x = b , a ;  -- -- 
aY ay3 

we must also satisfy the volume constraint (13) in its non-dimensional form, 

l l h d z d y  = d. 

The edge conditions are given by (16) and (17), with all the primes removed; since 
6' is the reciprocal of a velocity, 6 = d"a,/t,. The parameter u is an inverse Bond 
number, and in the experiments had a small value. Another parameter to which 
surface tension contributes is the capillary number Ca = p U / y ,  where U is a typical 
velocity, which represents the relative importance of viscous and capillary effects. In 
this problem, however, there is no extrinsic velocity and, if we replace U by its value 
at  the lower edge, we find that the capillary number there, at  time t ,  is given by 

pa, pga, sin 0 da - 1 da - - -- Ca = 
yp dt u dt . (23) 

When the capillary number is large, we do not expect the contact lines and the 
dynamics of the fluid and free surface near them to have much effect on the motion. 
However, when the fluid elongates into the form of a thin sheet, we expect the 
velocity of the contact line to become small ; the associated capillary number will also 
be reduced, so contact-line effects will eventually become important, even if they are 
not so initially. 

3. Fluid sheet 
In the experiments described by Huppert (1982), a fixed amount of fluid was 

placed uniformly across the plane and, when released, formed an elongating thin 
sheet of fluid with, at first, a straight leading edge. If there is no spanwise variation, 
and if, for the present, we ignore slip, the equation (19) for h reduces to the form 

When the transitory effects associated with the initial release of the fluid have 
disappeared, a similarity solution is possible in which the first and last terms of (24) 
are balanced, that is, the viscous stress on the plane balances the weight of the fluid 
and the fluid motion forces a change in the position of the free surface of the fluid. 
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This similarity solution was found by Huppert, and, in the notation used here, has 
the form 

With the upper edge of the fluid remaining at its initial position, the volume 
constraint (22) determines the position of the lower edge. We have, from (22) and 

and so (27) 

In this solution, the height of the sheet increases down the sheet and reaches a 
maximum value proportional to t-i at its end, the length of the sheet being 
proportional to ti. The relevance of this solution to his experiments was tested by 
Huppert, who found that it did describe the temporal development of the fluid sheet 
quite accurately. 

If we compute the sizes of the neglected terms in (24) ,  compared with the terms 
retained, we find that the approximation is valid provided that 

u .g &, cote .g &, (28) 
and hence, for t 9 1 ,  the solution holds, except near the trailing edge. In addition, at 
the trailing edge, the slope of the free surface is infinite and the conditions of 
lubrication theory are violated. A more serious criticism of this solution is that the 
height of the sheet is (2t /3)-+ at the lower edge of the sheet and not zero. Thus it is 
necessary to include short regions near the two edges in which surface tension is not 
negligible in order to complete the solution. 

Near the trailing edge, which is fixed at  x = 0, we can find another similarity 
solution, in which we can take h to have the form given by 

h = t - y ( ~ ) ,  7 = xti. (29)  
When this postulated form is substituted into (24) ,  we find that f must satisfy the 
equation 

to which the surface-tension term has contributed, while the other omitted term 
(with factor cote) is only O(t-3) relative to the retained terms. The boundary 
conditions on f are that 

a(fgf'")'+ 3 f "f++(?j f '- 3 f) = 0, (30)  

j = o  at 7 = 0 ;  f - 7 ;  as q- fco .  (31)  

f =  2 . 2 ~ - $ + 0 ( 7 2 1 , 7 )  for 7 < I ,  (32)  

A numerical calculation confirms that such a solution exists, with 

so that, at  x = 0, 

_ -  - 2.2u-it;. ax 
ah 

(33)  

The slope at  the upper edge is fmite and decreases monotonically as time increases. 
When the slope falls below the value of /3,, the upper edge of the fluid will begin to 
slide down the plane. Of course, if /3, = 0 the upper edge will never move. We have, 

13-2 
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therefore, completed the solution near the upper edge without altering the validity 
of the description of the motion of the bulk of the fluid provided by Huppert’s 
similarity solution (25). 

For the vicinity of the leading edge, we need a solution that will have a finite slope 
at the edge itself and match with the similarity solution away from it. A suitable 
form for this region is given by 

h = t - v ( t ) ,  where 5 = d t i ( a ( t ) - x ) .  (34) 
The position of the edge is given by (27) and the boundary conditions for f are that 
f - cE as g + O  for some constant c,  and f -+ (t); as t+ co in order to match with (25) 
a t  x = a. For large t ,  the leading terms in (24) .when h is given by (34) obey the 
equation 

where a prime denotes a derivative with respect to 6 .  The time-derivative term in (24) 
only contributes to this equation through the dependence of a on t ,  so this is a quasi- 
steady equation. The omitted terms are O(t-i) compared with the terms forming (35). 
Huppert produced an equation similar to (35) and deduced the existence of a 
capillary region near the contact line in which the height of the drop increased from 
zero to match with his similarity solution away from the edge. However, his equation 
omitted the third term in (35) and the sign of the first term was reversed. We can 
integrate (35) once, to give 

(f”f”)’- (f ”)’+ (:)iff’ = 0, (35) 

f”f” - f 3 + (9)k f = c, (361 
and C, the constant of integration, must be zero iff is to have the correct limit a t  
infinity. Hence, 

(37) f”f” = f 2 -  (a):. 
The only solution of this equation that satisfies f (0) = 0 has the form 

f = MJ - In 6);. (38) 
Although this solution has an infinite slope at the origin, the singularity is only a 
weak one and the solution might be regarded as acceptable, if it were not for the fact 
that the constant k must be negative. The failure of this attempt to  complete the 
similarity solution of Huppert by adding to  it a narrow region near the edge where 
surface tension is important requires us either to abandon Huppert’s solution or to 
modify the equations near the contact line. The first possibility conflicts with the 
experimental measurements made by Huppert, which confirmed the rate of extension 
of the sheet given by (27) very well. The alternative is to allow for slip near the edge ; 
this should not cause any surprise since i t  is well known that difficulties arising from 
moving contact lines can be removed by such a modification. 

With the slip included, the equation for h is given by (24) with h3 replaced by 
h2(h+h) and, with the same variable changes as before, (37) becomes 

f (f +At:) (f ”’- 1 )  = - (t)i, (39) 
provided At: = e % 1, and we again have a quasi-steady solution. The boundary 
conditions that f must satisfy if it is to be a satisfactory representation of the free 
surface of the sheet near the leading edge are 

f(0) = 0, f’(0) = c, f(co) = (g) i+O(s) .  (40) 
The small change in the value off a t  infinity is of negligible significance and comes 
about because our model for slip allows it to be present everywhere and not just in 
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5 0 

FIQURE 4. Height of the sheet near the leading edge. 

the vicinity of the moving contact line. Since appropriate values o f h  are exceedingly 
small this convenient assumption for the modification is acceptable. 

A numerical solution of (39) confirms that a solution that satisfies the conditions 
(40) exists for all values of c .  The structure of the solution can be divided into three 
parts. For values of 6 of order e ,  f’ increases to a large value, dependent on -In e .  
This is followed by a region in which 6 is of order 1 in which the value off exceeds 
f (m), rises to a maximum and then falls to values near f (00) .  Finally, there is a long 
region in which f approaches its value at  infinity in a damped oscillatory fashion. A 
sketch of this behaviour is drawn, not to scale, in figure 4. For the inner region, we 
can set 

and to leading order (39) becomes 
f = E ( t ) O ,  6 = Ex, (41) 

d3F 1 
dX3 --F(F+l)* 
-- 

For small values of X, the solution has the form 

F = c,X+O(-X21nX), 

F - X(31nX+c2):, and, for large X, 
(43) 

(44) 

where c1 and c2 are constants. A solution asymptotically proportional to X2 is 
possible, but gives a large positive value off“ in the outer region, which implies that 
f > f (03) for some finite value of 6 with f ” positive and increasing and it is impossible 
to match this solution to the required condition at infinity. In the outer variables, the 
solution (44) becomes 

and the boundary condition for the leading term in this region is 

f - ($)it( -3 In E+C, +3 In 614, 

f’(0) = (-$jlne)i = d,, 

say. When f % 1, f”’ = 1,  from (39), so that 

(45) 

f = d , ~ - @ & ? + + j .  (47) 
If d,  has a valye close to, but larger than, (a$,)&, f reaches a maximum value 
proportional to $ at a value of 6 proportional to @ before decreasing to a value O( 1). 
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f -5 

FIGURE 5. Profile of the elongated sheet before instability. 

For the final stage, in which f approaches its asymptotic value, we can write f = f (co ) 
(1  +g), where g is small, and (39) becomes 

gfff = 29, (48) 

confirming that g tends to zero in an oscillatory manner. This analytic description of 
the solution, without being complete, identifies the three regions suggested by the 
numerical work. 

We have now shown that the similarity solution for the bulk of the elongating 
sheet of fluid can be satisfactorily matched with edge regions in which surface tension 
is important. The shape of the free surface for large t is sketched in figure 5.  The most 
significant feature is the ridge near the leading edge, where the height of the sheet is 
considerably greater than that higher up the plane. In the ridge, as we have seen, 
there is a balance between gravity and surface tension, and the shape is the same as 
in a static fluid sheet. Figure 5 does not include the narrow slip region of width A at 
the leading edge. The apparent contact angle, that is the slope of the surface at  the 
edge, measured in the outer region, can be found from (46) and (34). We find that 

aapp = t-i( - 8 In €1;. (49) 

The speed of the contact line daldt = it-;, so that the apparent contact angle varies 
with the capillary number in the manner given by 

This model therefore produces a dynamic variation in the contact angle measured 
outside the slip region. Of course, we cannot expect to obtain contact-angle 
hysteresis. The similarity solution ceases to be valid when the contact angle decreases 
to its maximum static value, since the contact line then stops moving. The 
dependence of the contact angle on the cube root of the capillary number agrees with 
the data on apparent contact angles obtained by Hoffman (1975), as was established 
by de Gennes (1985). 

4. Instability of the elongating sheet 
Now that we have found a description of the motion of the sheet of fluid, including 

the contributions made by surface tension at  the two edges, we can try to find an 
explanation for the observed instability of the motion. 

The basic similarity solution for the bulk of the sheet can be extended to permit 
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spanwise variations of the leading edge. The value of h is still given by (25), but the 
position of the lower edge can have the form 

provided A satisfies the volume condition 

Aidy = d. fi 
Hence, any initial disturbance of the leading edge is magnified as it advances down 
the plane by a factor proportional to ti without changing shape. This, however, does 
not have the features of the observed instability, which appeared spontaneously 
after the sheet had become sufficiently elongated. Also, surface tension does not play 
any role in the development of such a deformation of the leading edge, while the 
measured lengthscale of the spanwise variation was found to depend on the size of 
the surface tension. 

In order to examine the evolution of a small spanwise corrugation of the surface 
of the sheet, we can write 

where g is small. The relevant form of the general equation (19) for h, including the 
effect of the spanwise curvature of the surface, is 

and when the value of h given by (53) is substituted, we obtain the equation 

(54) 

This equation has the solution 

so that the disturbance decays in the downward direction. 
From these considerations, we deduce that the instability is closely connected with 

conditions near the leading edge of the sheet. Contact-line dynamics, and the 
associated capillarity and contact-angle phenomena, are usually only of prime 
importance when the capillary number is small. In Huppert’s experiments the 
capillary number is initially large, but, as the fluid becomes elongated, the velocity 
decreases and so does the contemporary value of the capillary number. Precise values 
of the length of the sheet when the instability began are not given by Huppert, but 
he does provide a comparison between the experiments and the similarity solution, 
from which we can infer that the contact line is still straight when the capillary 
number has decreased to values of 0.05 or less. This strongly suggests that the cause 
of the instability must be sought in the low-capillary-number regime, which is 
consistent with its delayed appearance. 

The ahape of the surface of the sheet when it has become long, as sketched in figure 
5, consists of a ridge of fluid near the lower edge, with a thinning sheet of fluid 
extending back to the upper edge. It does not seem likely that this sheet plays a 
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significant role in the instability. If this supposition is correct, we can consider, 
instead of the combined ridge and sheet, an isolated ridge of fluid, and yet retain the 
dynamical processes that are important in producing the observed fingers and 
triangles at the lower edge of the sheet. 

5. Linear instability of a fluid ridge 
The spreading and sliding of a ridge of fluid placed on an inclined plane with 

straight, horizontal contact lines, was considered by Hocking (1981, 1982). He 
showed that, to leading order, the shape of the ridge is given by a quasi-steady 
balance between gravity and surface tension. For a ridge of given width, the 
instantaneous contact angles cannot be predetermined and the motion of the ridge 
is driven by the necessity for the ridge to move so that the contact angles reach their 
proper values and that the net component of force on the fluid in the ridge down the 
plane is zero. To arrive at an evaluation of the speeds at  which the two edges of the 
ridge move it is necessary to examine the slip regions near each edge and to match 
the solutions in these regions with the flow outside them. A similar approach for the 
present problem, in which the edges do not remain straight, would be more difficult. 
Instead, it seems legitimate to examine the stability of the ridge in its progress down 
the plane by postulating a convenient form for the dynamic variation in the contact 
angle. Then we can determine the instantaneous height of the ridge for given 
positions of the edges by the quasi-static balance of surface tension and gravity. This 
will enable us to find the contact angles at  the edges and, from the known dependence 
of these angles on the velocity of the contact lines, we can advance the edges to the 
position they reach after a small time interval. Proceeding in this way, we can find 
the evolution of the positions of the edges of the ridge as the fluid moves down the 
plane. 

The governing equations are given by (1)-(17), but it is convenient to change the 
non-dimensionalization. We choose as the lengthscale a,, the half-width of the ridge 
in its initial position. We now define u in terms of this lengthscale by 

6Y 
pga: sin B ’ cT= (57) 

and non-dimensional values of the height of the ridge, the time and the volume of the 
fluid in the ridge by 

ha 4a3 h‘ = 0, t‘ = ta, a#, F/” = >dV. 
U 3u ’ (58) 

we also have to scale the static contact angles by writing 

a, = a,/fl, P, = PJfl. (59) 

The leading term in the equation for h, which is a modified version of (19) using 
the new scalings, is given by 

and this equation is to be solved in the region defined by 

Qy, t )  < x < a(y, t ) ,  0 < y < d,  
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with boundary conditions 

- 0  on y = O , d ;  h = O  on x = b , a ;  -- ah 
a Y  

and with the volume constraint 

I I h d x d y  = S V .  

The normal velocity components a t  the edges are given by 

at 

and the angles between the free surface of the fluid and the plane at the contact lines 

The edge conditions (16) and (17), which determine the evolution of the positions of 
the edges, then become 

a = a,+Ua, if U, > o , ]  

1 $, < a < a,, 
a = $,+ U,, 

$ = $,- ub, 

$, < $ < a,, 
$ = a,--,, 

if U, = 0, 
if U, < 0, 

if U, > 0, 
if u b  = 0, 
if U, < 0, 

for the lower edge, and 

\ 
for the upper edge. We must also have a and $ non-negative. 

that satisfies conditions (62)  and (63) is 
At t = 0, the edges are given by a(y ,  0) = I ,  b(y ,  0) = - 1 and the solution of (60) 

h = x - x 3 + V ( 1 - x 2 ) ,  a = 2 ( 1 + V ) ,  $ = 2 ( V - 1 ) ,  (68) 

and we must have V 2 1. This completes the formulation of the problem for the ridge 
of fluid on an inclined plane ; the parameters are V ,  d, a, and $,. 

We consider first the motion of the ridge with straight edges and then examine the 
stability of this motion to  a small imposed spanwise variation of the edges of the 
ridge. It is convenient to take an  origin moving with the centre of the ridge and so 
to write 

a = a,+a,, b = a,-a,, x = a,+X, (69) 

with a, = 0, a, = 1 initially. The appropriate solution of (60) is then 

If both edges are moving down the plane, (66)  and (67) show that 

d a e - 2 V  a+$ - _  da,- zag--, a-$ 
dt a: 2 ’ dt 2 
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provided V >, 4 4 .  These two equations give the rates at which the ridge spreads and 
slides, respectively. A steady motion is possible, with a, given by aE(a+B) 4V, and 
with the ridge moving with the constant speed &V(a +p) -a(a -p) .  

We now suppose that the edges are displaced by a small spanwise disturbance, so 
that their position is given by 

a = a,+a,+ecosqya,, b = a,-a,+ecosqyb,, (72) 
where E is small. If the ridge is unbounded in the spanwise direction, q is arbitrary, 
but, if it is bounded, the possible values of p are multiples of n/d. The height of the 
ridge is h + ~ h , ,  where h is given by (70) and h,, which is a harmonic function, has the 
form 

If we retain only the linear terms in an expansion in powers of the small parameter 
e, the condition that the height should vanish at the edges gives the equations 

h, = cosqy(A, coshqX+B,sinhqX). (73) 

A ,  cosh qa, = a:(., + bq) + 
(74) 

The time-variations of a, and b, are fixed by the edge conditions (66) and (67), which, 
since we are assuming that both edges are moving, give the equations 

I a, - q(A, sinh pa, +B, cosh qa,), 
dt 

6, - p(A, sinh pa, -B, cosh qu,). 
dt 

(75) 

These equations have solutions proportional to exp (pt) with p given by 

a3 
2 v  
e p  = 1 - Q coth 2Q f [Q2 cosech2 2Q +P2(9 - 6Q coth 2Q + Q2)$, (76) 

where Q = pa, and P = a:/V. The condition that the slope a t  the upper edge must be 
non-negative shows that the permissible range for P is 0 < P < 1. The amplitude of 
the distortions of the edges will grow with time when p > 0. For P = 0, the ridge is 
unstable when QtanhQ < 1, that is, when 0 < Q < 1.1997, approximately. For 
P = 1,  there is instability when Q < 2 tanh2Q, that is, when 0 < Q < 1.9987, 
approximately. The instability boundary for other values of P is sketched in figure 6. 
The maximum growth rate for each value of P occurs as Q+O, that is, for disturb- 
ances with the longest wavelength. I n  an unbounded channel, all we can say 
is that sufficiently long disturbances to the positions of the edges will grow; a 
nonlinear theory is needed to establish their shapes. For a channel of width (a, the 
smallest possible value of Q is na,/d. If this value for Q lies on the stable side of the 
curve in figure 6, all disturbances to the edges will remain small and the ridge is 
stable. Otherwise, we expect disturbances with wavelength equal to 2d to grow most 
rapidly. If this disturbance remains the dominant one when the amplitude has 
become large, the edges will have their maximum displacement at one wall and their 
minimum at the other. Fluid from one half of the channel will drain towards the 
other half and the bulk of the fluid will move down the plane on that side. 

Although we have established that a ridge of fluid, in a sufficiently wide channel, 
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Stable 

Q 
FIQURE 6. Linear stability boundary. 

is unstable, the form that instability takes is not that observed experimentally. 
The observed fingers and triangles have a width which is much less than that of 
the channel. But in order to predict the shapes to which an initial disturbance of the 
edges may lead, linear instability analysis is not enough. A preliminary investigation 
of nonlinear affects is reported in the next section. 

In the linear analysis, we have assumed that a, is constant, although it will 
in general be a function of the time. The exception is the special case for which 
a:(a+P) = 4V when the ridge slides without spreading. This neglect of the time- 
variation of the basic state in the perturbation analysis is justified if the growth rates 
of the instability are large. But in order to determine the nonlinear behaviour, this 
variation must be included and it is not sufficient simply to continue the expansion 
to higher powers of the amplitude E ,  while keeping a, constant. 

6. Nonlinear instability of a ridge 
For the nonlinear problem, we suppose that the edges are given an initial small 

displacement. For the unbounded case, this disturbance is assumed to be periodic 
and symmetric, so that the solution need only be found in a half-period. For the 
bounded case we can make a similar assumption, the half-period being then equal to 
the width of the channel. We ignore the effect of boundary layers on the walls of the 
channel. One computational method for the solution of this problem is to express the 
positions of the edges in the form of a Fourier series, namely 

mKY mKy b = bo+xbm(t)cos- a = a o + ~ a m ( t ) c o s -  
m m 

d ‘  1 d ’  1 
(77) 

The height of the sheet can similarly be expressed in a form that satisfies (60), namely 

cos 7. (78) 
mzx 

h = -x3 - Cx2 + A ,  +Bo x+ cosh -+B, sinh - 
1 d d 

If these expansions are truncated at m = N ,  we have 4N+5 unknowns which can be 
found by collocation from the edge conditions h = 0 at x = a, b at N +  1 points along 
each edge, the contact-angle conditions (66) and (67) at the same points, and the 
volume constraint (63). The initial positions of the edges are given by a = 1 and 
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FIGURE 7. Nonlinear evolution of the lower edge. The position of the inflexion point is marked. 
(a )  Small amplitude. ( b )  Larger amplitude. 

b = - 1, with some small disturbance added. In the calculations reported here, the 
initial value of a was changed to 1.1 at one of the collocation points. This choice has 
the advantage that it does not favour a particular wavelength. 

This numerical scheme was found to work satisfactorily for a limited time. As the 
ridge moves down the plane, the hyperbolic functions in (78) have to be evaluated 
for large arguments, particularly for the larger values of m, and this leads to an ill- 
conditioned matrix. The calculations could be performed for a longer time by using 
a moving origin midway between the mean positions of the two edges, but this too 
broke down when the range of values of a and b across the channel became large. 
Nevertheless, the results that were obtained enable certain conclusions to be 
reached. When the channel was narrow, the initial disturbance died away and the 
edges of the ridge remained straight as it moved down the plane, as predicted by the 
linear theory in $5.  For larger values of d ,  the edges showed the half-wave shape as 
predicted, but as the amplitude grew the width of the lower portion of the fluid 
narrowed. A suitable measure of the width of this bulge was found by the distance 
of a point of inflexion of the edge from the channel wall. This bulge suggests the 
incipient appearance of a finger of fluid, although the calculations failed before that 
could be fully realized. An interesting feature of the calculations was that, when they 
were repeated with a channel of double the width, the width, and indeed the shape, 
of the bulge did not change. A sketch of the developing shape of the lower edge is 
shown in figure 7. This suggests that the nonlinear development of the shape of the 
edge of the fluid is into fingers whose width is independent of the channel width. 
When a disturbance was initiated on both sides of the channel, two such fingers of 
equal width developed, which points to the possibility of fingers with variable 
spacing, aa in figure l(g) of Huppert’s (1982) paper. No suggestion of the observed 
triangular shapes was found in the calculations. The spanwise lengthscale for the 
instability was found experimentally to be proportional to yt, where y is the surface 
tension. With the non-dimensionalization used here, this lengthscale could depend on 
d, the width of the channel, and on the scaled angles a, and /I,, which are 
proportional to y.  The linear theory of $ 5  predicted that the spanwise length should 
be proportional to d,  but the nonlinear calculations gave values independent of d and 
they were not in disagreement with the observed proportionality to yi. 
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7. Conclusions 
The two-dimensional elongation and subsequent instability of a fluid sheet being 

stretched by gravity down an inclined plane has been investigated in this paper. The 
aim has been to describe the motion of such a sheet as observed by Huppert (1982) 
and to understand the appearance and subsequent growth of spanwise distortions of 
the initially straight leading edge of the sheet. In giving a summary of what has been 
done, i t  is convenient to compare the contents of this paper both with the 
observations recorded by Huppert, and with the quantitative results and 
explanations he deduces from them. Four goals for the investigation were identified 
in $1, and the extent to which each has been achieved can be described in turn. 

The first goal relates to the growth of the sheet for that period in which the leading 
edge remains straight. The similarity solution derived by Huppert, and confirmed 
experimentally, has been completed by the inclusion of surface tension. This enables 
the solution to be found in the regions near both the stationary trailing edge and the 
moving leading edge. Because of the presence of a moving contact line, it is essential 
to remove the force singularity that occurs there when the no-slip condition is used. 
Huppert’s attempt to close his similarity solution by including surface tension in the 
frontal region has been shown to be incorrect. A feature of the solution near the 
leading edge is an increase in the thickness of the fluid behind the front above that 
of the sheet extending up the plane to the trailing edge. 

The second goal is to explain the delayed appearance of the instability that 
distorts the shape of the leading edge of the sheet. From his experiments, Huppert 
deduces that the length of the sheet when instability sets in is proportional to the 
square root of the cross-sectional area of the fluid which formed the sheet, but this 
is immediately obvious when the variables of the problem are made non-dimensional, 
as in $2. He claims that viscous effects would stabilize any cross-flow variations in 
the thickness of the sheet, so surface tension must be taken into account. However, 
it has been shown in $4  that surface tension is not destabilizing in the main part of 
the sheet and, if i t  is the cause of the instability, it must be because of its influence 
on the frontal region. Huppert himself relates the wavelength of the instability to the 
lengthscale of the frontal region, which depends on the surface tension through the 
non-dimensional parameter c r i  (in the notation of the present paper), but he makes 
no attempt to explain the cause or the delay of the instability. From his experiments, 
however, it is clear that the instability only occurs when the capillary number has 
become sufficiently small and that it is the frontal region, and not the body of the 
sheet, that is significant in the appearance of the instability. If this is so, the motion 
in the frontal region must be determined accurately if any progress is to be made 
towards understanding the phenomenon, which requires contact-line and contact- 
angle effects to be incorporated. 

The third goal is to predict theoretically the linear characteristics of the 
instability. This is a very difficult task, even numerically, because the base flow on 
which perturbations should be imposed is itself varying in both space and time. Since 
the main change in the profile of the sheet when the capillary number becomes small 
is the appearance of a ridge immediately behind the leading edge, a possible way 
forward is to concentrate on a model problem that consists of the ridge by itself. The 
base flow is then the quasi-steady sliding of the ridge down the plane, and a 
perturbation analysis is much easier to perform. This is done in $5, and the ridge is 
shown to be unstable to spanwise disturbance of sufficiently large wavelength. Of 
course, this model does not reproduce all the characteristics of the instability of the 
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sheet. The main difference is that in the model problem all disturbances are 
suppressed until the ridge has been fully developed and only then are perturbations 
allowed to occur. For the sheet, disturbances are free to occur at  all times and may 
well begin to develop before the ridge is fully formed. This may well account for a 
major difference between the instability of the ridge and that observed in the sheet. 
For the ridge, no preferred wavelength is predicted, only a cut-off value dependent 
on the width of the container. The experiments, however, are reported to reveal a 
periodic shape for the leading edge, with the wavelength a constant multiple of d; 
the scaling of this wavelength is fixed by dimensional analysis and the size of the 
frontal region or ridge. Examination of the' photographs reproduced by Huppert 
shows that the shape is not precisely periodic and, in one case at least, is very far 
from being periodic (figure l g  in his paper). 

The fourth goal concerns the nonlinear development of the instability. The 
appearance of triangles and fingers as the leading edge of the sheet advances is 
perhaps the most intriguing aspect of the instability, but no explanation of this 
phenomenon has yet been given. Since the linear theory does not determine a 
preferred wavelength, it is necessary to perform a nonlinear calculation before 
predictions can be made on the shape taken by the leading edge after the instability 
sets in. The preliminary numerical work for the ridge suggests the emergence of 
fingers of constant width, spaced irregularly, which is similar to the pattern shown 
in the cited figure of Huppert. 

The final question that is natural to ask, but difficult to answer, concerns the 
physical reason for the instability. Huppert does not give an answer to this question, 
beyond the statement that surface tension is important. Since the motion is driven 
by gravity and influenced by surface tension, the basic mechanism may be the same 
as in Rayleigh-Taylor instability, modified by the controlling effects of the contact 
line and contact angle. 

This paper was completed while I was at the Engineering Science and Applied 
Mathematics Department of Northwestern University. My visit there was supported 
by a grant from the US Department of Energy, reference DE-FG02-88ER13927. 
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